Warmer Kiwis Study: Final report An impact evaluation of the Warmer Kiwi Homes programme

Caroline Fyfe Arthur Grimes Shannon Minehan Phoebe Taptiklis

In partnership with: Allen and Clarke Massey University University of Canterbury University of Otago, Wellington Victoria University of Wellington

Background

PHASE 1: Desk based review (2020)

Objectives:

- Benefit: Cost Ratio for Warmer Kiwi Homes estimated from similar programmes conducted in NZ and internationally.
- Summary of evidence gaps and outline of opportunities to use an evaluation of WKH to address these.

PHASE 2: Primary data collection from Warmer Kiwi Homes heat pump subsidy recipients (2021/22).

Objectives:

- Measure impacts on health and wellbeing, indoor environment, and change in electricity use.
- Accurate Benefit: Cost ratio for Warmer Kiwi Homes

Interim Report (December 2021)

- Initial findings from monitoring of 127 homes in the first winter after having a heat pump installed.
- Covers the monitoring period June-Sept. 2021.

Final Report (November 2022)

- Complete technical assessment of the effects of having a heat pump on a larger sample of homes over two winters.
- Cost benefit analysis of Warmer Kiwi Homes Programme.
- Covers the monitoring period June 2021 Sept. 2022.

Motu economic & public policy research

Study design

- Cohort study of 164 households that applied for a heat pump through Warmer Kiwi Homes (WKH) programme
- WKH eligibility: Homeowner in decile 8-10 area or with CSC
- Recruitment began April 2021; monitoring conducted over June 2021– Sep 2022 in Auckland, Waikato, Wellington, Christchurch
- **Cohort 2021** (Collected data starting June 2021; finishing Sep 2021)
 - N = 127 Collected from all four regions 1 x winter
- Cohort 2021 extension (Collected data starting June 2021; finishing Sep 2022)
 - N = 85/127 Collected from all four regions 2 x winters 1 x summer
- Cohort 2022 (Collected data starting June 2022; finishing Sep 2022)
 - N = 37 Collected from Wellington 1 x winter

economic & public policy research

Study components

Data	2021 Cohort	2021 Cohort (ext)	2022 Cohort
IAQ monitor (Indoor)		✓	✓
CliFlo (Weather)		1	✓
Electricity	✓	1	✓
Survey 1 (before)	1	1	\checkmark
Survey 2 (after)	1	1	1
Survey 3 (subsequent)	×	✓	X
Efergy	×	×	1

Sample

- 164 households (437 people) were recruited across the three clusters
 - 56 households (34%) in Climate Zone 1 (Auckland)
 - 82 households (50%) in Climate Zone 2 (Waikato and Wellington)
 - 26 households (16%) in Climate Zone 3 (Christchurch)
- 2021 recruitment suspended due to the community spread of COVID19 Delta variant
- Supply chain issues meant not all 2021 cohort households had heat pump installed by Sep 2021

Descriptive statistics (before survey, all cohorts)

Socio-demographic characteristic	Ν	Percentage of each variable
Pre-school (<5 years)	23	5.3
School age (5-17 years)	62	14.2
Adult (18-64 years)	246	56.3
Older adult (>65 years)	80	18.3
New Zealand European	173	39.6
Māori	73	16.7
Pacific peoples	65	14.8
Asian	120	27.5
Middle Eastern	2	0.5
Female	209	47.8
Gender neutral	5	1.1
Male	223	51.0

Descriptive statistics (before survey, all cohorts)

Socio-demographic	Ν	Percentage of each
characteristic		variable
Homemaker	14	3.2
Unable to work (medical)	8	1.8
Seeking work	14	3.2
Pre-schooler	23	5.3
Student	96	22.0
Working	197	45.1
Retired	81	18.5
Auckland	151	34.6
Waikato	22	5.0
Wellington	204	46.7
Christchurch	60	13.7

NotU economic & public policy research

Results

Wellbeing transitions

After vs Before Surveys (DiD)

	Worsened	Constant	Improved
Life satisfaction	26	24	40
Cheerfulness	18	38	30
Self-reported health	17	53	21
Perceived cold	4	12	76

Each cell shows difference in number of responses between houses with heat pump fitted vs houses with no heat pump fitted

Subsequent vs Before survey shows stronger self-reported health benefit:

- 21 improved vs 11 worsened; 42 constant

Regression evidence

- Strong impact of heat pump installation in reducing perceived cold (robust across multiple specifications) [included in CBA]
- Evidence (p<0.1) that time since heat pump installation positively impacts life satisfaction

Actual economic & public policy research

Modelled temperature impacts with & without heat pump (first winter)

NotU economic & public policy research

Average temperature impact of heat pump by time of day (first winter) [all significant at p<0.01]

economic & public policy research

Average temp impact of air conditioner use per 10°C increase in outdoor temp (p<0.05 from 5pm – 11pm)

economic & public policy research

Relative humidity and CO₂ impacts of heat pump (first winter)

- Heat pump reduces indoor relative humidity (p<0.01) by: ~ 5% of its mean,
 - ~ 30% of its standard deviation
 - Reduction in indoor humidity is greatest when outdoor humidity is high

- Heat pump installation also associated with reduction in indoor CO₂
 - Possibly due to greater ventilation if living area door left open

Electricity use impact of heat pump by hour of day (first winter) Overall impact is <u>16% reduction</u> (p<0.05) across a full winter's day (p<0.05 for 7pm – 9pm)

economic & public policy research

Cost benefit analysis

Cost benefit analysis

- Cost benefit analysis of WKH programme was undertaken from:
 - a fiscal (government level) perspective
 - a societal (population level) perspective.
- 3 base case scenarios:
 - (i) insulation component only
 - (ii) heat pump component only
 - (iii) whole programme (insulation + heat pump) Each with:
 - 5% discount rate to calculate NPV of future costs and benefits
 - 75% additionality,
 - fiscal multiplier of x1.2 on government expenditure

Costs

- Insulation (80% EECA) fiscal
- Insulation (20% householder) societal
- Administration insulation fiscal
- Insulation incentive fiscal not societal
- Heat pump (80% EECA) fiscal
- Heat pump (20% household) societal
- Heat pump servicing **societal**
- Administration heat pump fiscal
- Opportunity cost of next best alternative heater **societal** negative cost

Benefits

- Hospital admissions avoided fiscal
- Pharmaceutical prescriptions avoided fiscal
- Pharmaceutical prescriptions avoided **societal**
- Increase in survival **societal**
- Net change in wellbeing (perceived cold) **societal**
- Days off work due to sickness **societal**
- Days off work caregiving **societal**
- Days of school due to sickness **societal**
- GP visits avoided **societal**
- Net change in CO2 from difference in kwh electricity consumed **societal**
- Average change in electricity consumption **societal**

Assumptions

- Costs and benefits based on 2021 prices
- The heat pump lasts 10 years (length of warranty) at 100% efficiency
- The next best alternative lasts 10 years at 100% efficiency
- Insulation lasts 30 years at 100% efficiency
- Heat pumps installed only in fully insulated houses
- Benefits remain consistent for the life of the heat pump and insulation
- No extra reduction in days off work/school from heat pump in addition to insulation
- Time off work to care for child only required if all adults in household work
- Survival increases only for those >65 years with pre-existing circulatory condition
- Number of GP visits required equals number of prescriptions dispensed

CBA Outcomes: Base case scenario

Base case BCR	Societal perspective	Fiscal perspective*
Whole programme: wellbeing/ energy benefits	4.36	
Whole programme: health/ energy benefits	1.89	0.80
Heat pump: wellbeing/energy benefits	7.49	
Heat pump: health/energy benefits	2.15	0.52
Insulation: wellbeing/energy benefits	3.51	
Insulation: health/energy benefits	1.78	0.98

CBA Outcomes: Sensitivity analysis

Societal BCR	2% discount rate	50% additionality	100% additionality	\$150 p.a. service cost		
Societal BCR	Societal BCR					
Whole programme: wellbeing/energy	5.70	4.11	4.29	4.15		
Whole programme: health/energy	2.44	1.78	1.96	1.80		
Heat pump: wellbeing/energy	8.46	7.27	7.60	6.96		
Heat pump: Health/ energy	2.43	2.09	2.18	2.00		
Insulation: wellbeing/energy	4.97	3.48	3.52	3.51		
Insulation: health/ energy expenses	2.42	1.77	1.79	1.78		
Fiscal BCR						
Whole programme: health/energy	1.09	0.77	0.81	0.84		
Heat pump: Health/ energy	0.59	0.51	0.52	0.52		
Insulation: health/ energy expenses	1.39	0.95	1.00	0.98		

Motu economic & public policy research

Potential extensions

Data available now

House characteristics:

Housing quality: Mould and damp, house condition, curtains, draughtiness

Indoor temperature,

relative humidity, carbon dioxide, dew point, lux (half hourly)

Heating and ventilation behaviour, cold perception

Whole house electricity use (halfhourly) n=95

Heat pump electricity use (half-hourly linked and minute unlinked) n=20

Outdoor temperature and humidity

Wellbeing: Life satisfaction, WHO5, health

Demographics: Age, work/study status, sufficient income

economic & public policy research

Exploratory models for IOtemp18 (Indoor temp - outdoor temp, when outdoor temp <18C)

IOtemp18	Model 1	Model 2	Model 3	model 4
	R ² = 0.29	R ² = 0.36	R ² = 0.30	R ² = 0.32
hour	supp			
kwh	1.33 (1.30, 1.35)			
lux_1000	0.33 (0.31, 0.34)			
volume	-0.01(-0.02, -0.01)			
floor area (vs less than 100m2)	ref			
100-200m2	-1.01 (-1.07, -0.96)			
Larger than 200m2	-1.76 (-1.83, -1.69)			
HP (vs no)	ref			
Yes	1.54 (1.50, 1.58)			
Region_NS (vs Auckland)	ref			
Hamilton	1.56 (1.49, 1.62)			
Wellington	2.50 (2.44, 2.55)			
Christchurch	3.56 (3.50, 3.62)			
Draughty (vs Never)		ref	NA	NA
Sometimes		-1.11 (-1.15, -1.07)	NA	NA
Often		-1.26 (-1.32, -1.20)	NA	NA
Always		-3.80 (-3.86, -3.75)	NA	NA
draughty_alg			-0.11 (-0.12, -0.11)	NA
poor condition (vs 0-1)				ref
2-3 poor condition ratings				-1.08 (-1.12, -1.04)
4-5 poor condition ratings				-1.68 (-1.72, -1.64)

Motu economic & public policy research

- Post grad projects: Masters and PhDs
- Data to support existing programmes
- Collaborations
- Housing system modelling
- Your ideas here

Houses are warmer Even in winter and spring Heat pumps are worth it

Appendix: Equation specifications

Perceived cold and life satisfaction $DepVar_i^{S2} = f(HPVar_i^{S2}, \sum_{j=1}^{J} DepVar_i^{S1_j}, Z_i)$

Temperature (also humidity and CO₂) $Temp_{iht}^{I} = \beta_0 + \beta_1 Temp_{iht}^{O} + \beta_2 HP_{iht} + \beta_3 HP_{iht} Temp_{iht}^{O} + \mu_{tc} + \mu_h + \mu_i + \varepsilon_{iht}$ $Temp_{iht}^{I} = \beta_0 + \beta_1 Temp_{iht}^{O} + \beta_2 AirCon_{iht} Temp_{iht}^{O} + \mu_{tc} + \mu_h + \mu_i + \varepsilon_{iht}$

Electricity use

 $Electricity_{iht} = \beta_0 + \beta_1 Temp_{iht}^O + \beta_2 HP_{iht} + \beta_3 HP_{iht} Temp_{iht}^O + \mu_{tc} + \mu_h + \mu_i + \varepsilon_{iht}$

Motu economic & public policy research